[ View Thread ] [ Post Response ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ]

BGonline.org Forums

Partial spoiler

Posted By: Timothy Chow
Date: Tuesday, 4 May 2010, at 9:05 p.m.

In Response To: Non BG Related Probability Problem - for fun (John McDonald)

The way I like to explain the birthday paradox is as follows. Given any pair of people, the probability that they have the same birthday is (about) 1/365. If there are n people, then there are about n2/2 pairs of people to choose from (the exact number of pairs is n(n – 1)/2 but n2/2 is close). So on average I should expect (n2/2)*(1/365) = n2/730 birthday coincidences among n people. If I'm looking for the 50/50 threshold then this should happen approximately when n2/730 = 1, i.e., when n is around the square root of 730.

This argument isn't quite right because, as illustrated by the roulette problem I posed recently, the 50% probability threshold isn't the same as the average value (median is not the same as mean) but it gets you in the right ballpark and makes the answer less baffling.

Messages In This Thread

 

Post Response

Your Name:
Your E-Mail Address:
Subject:
Message:

If necessary, enter your password below:

Password:

 

 

[ View Thread ] [ Post Response ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ]

BGonline.org Forums is maintained by Stick with WebBBS 5.12.